高分子数据库
产品目录
  • 嵌段共聚物
    二嵌段共聚物
    两亲性二嵌段共聚物
    疏水性二嵌段共聚物
    亲水性二嵌段共聚物
    三嵌段共聚物
    ABA三嵌段共聚物
    ABC三嵌段共聚物
    四嵌段共聚物
    五嵌段共聚物
    嵌段可裂解共聚物
    酸裂解嵌段共聚物
    UV紫外光裂解嵌段共聚物
    两性离子嵌段共聚物
  • 直链均聚物 | 共聚物 | 低聚物
    直链均聚物+修饰
    亲水均聚物+修饰
    疏水均聚物+修饰
    两性离子均聚物
    均聚低聚物
    无规共聚物+修饰
    2组分无规共聚物
    3组分无规共聚物
    两性离子无规共聚物
    含接枝嵌段的无规共聚物
    交替共聚物
    梯度共聚物
    缩合高分子
    RAFT大分子引发剂
    无机聚合物
    预聚物/单体
  • 生物降解高分子
    合成生物降解高分子
    均聚-生物降解高分子
    共聚-生物降解高分子
    嵌段-生物降解高分子
    荧光-生物降解高分子
    星形-生物降解高分子
    接枝-生物降解高分子
    修饰-生物降解高分子
    聚氨基酸
    聚氨基酸-均聚物
    聚氨基酸-嵌段共聚物
    聚氨基酸-接枝共聚物
    聚氨基酸-功能化修饰
    多糖及衍生物
    透明质酸
    海藻酸
    纤维素
    壳聚糖
    右旋糖酐
    硫酸软骨素
    肝素
    木聚糖
    聚蔗糖
  • 功能化PEG衍生物
    单官能团PEG/PPO
    双官能团PEG
    同双官能团PEG
    异双官能团PEG
    链端羟基PEG
    荧光标记PEG
    荧光标记直链PEG
    荧光标记星形PEG
    多臂星形PEG
    超支化树枝状PEG
    PEO-PPO嵌段共聚物
    PEO-PPO二嵌段共聚物
    PEO-PPO-PEO/PPO-PEO-PPO
    自组装PEG
    自组装PEG脂质体
    自组装PEG表面活性剂
  • 特殊形状高分子
    星形高分子
    多臂星形均聚物
    多臂星形嵌段共聚物
    3臂T型高分子
    4臂H型高分子
    接枝高分子
    超支化树枝状高分子
    笼型聚倍半硅氧烷POSS
    单个笼型POSS
    嵌段共聚物笼型POSS
    蝌蚪状高分子
    蝌蚪状均聚物
    蝌蚪状嵌段共聚物
    环状高分子
    环糊精
  • 功能高分子
    导电高分子
    导电均聚物
    导电共聚物
    导电嵌段共聚物
    修饰导电高分子
    导电低聚物
    荧光/发光高分子
    荧光均聚物
    荧光嵌段共聚物
    荧光标记高分子
    荧光共聚物
    OLED/OFET/OPV光电高分子
    Biotin标记大分子
    形状记忆高分子
  • 稳定同位素高分子
    氘化均聚物
    氘化疏水均聚物
    氘化亲水均聚物
    氘化嵌段共聚物
    氘化二嵌段共聚物
    氘化三嵌段共聚物
    氘化交替共聚物
    氘化无规共聚物
    氘化缩合高分子
    氘化星形高分子
    氘化接枝高分子
    碳13标记高分子
  • 特殊功能试剂
    高分子硫醇
    高分子均聚物硫醇
    嵌段共聚物硫醇
    高分子共聚物硫醇
    星形高分子硫醇
    笼型聚倍半硅氧烷硫醇
    聚硅氧烷
    聚硅氧烷均聚物
    聚硅氧烷二嵌段共聚物
    聚硅氧烷三嵌段共聚物
    聚硅氧烷无规共聚物
    笼型聚倍半硅氧烷
    液晶化合物
    含氟高分子
  • 标准品/电子级高分子
    高分子标准品
    电子级高分子
    电子级均聚物
    电子级二嵌段共聚物
    电子级三嵌段共聚物
  • 纳米材料相关
    石墨烯修饰剂
    碳纳米管修饰剂
    石墨烯
    高分子微球/纳米颗粒
搜索
   微信扫一扫
  联系客服

超支化树枝状聚合物的性质和应用

 二维码
发表时间:2021-09-23 09:32作者:高分子试剂网整理

超支化树枝状聚合物

Hyperbranched Dendro Polymer/Hyperbranched Dendrimer

例如聚乙二醇(PEG)、聚酰胺-胺(polyamidoamine, PAMAM)、聚硅氧烷(Polysiloxane)、聚赖氨酸(poly(Llysine) dendrons,   PLLD)等,是高度分枝、单分散的三维球型高分子,其尺寸、形状及表面化学官能基团在合成过程中有高度可控的特点,如今已在生物医学领域得到广泛应用,主要包括药物载体、基因载体、核磁共振造影剂等,成为该领域研究的热点高分子。


branch3.jpgbranch5.gif


mPEG-Dendro Amine.png

branch6.jpgbranch4.jpg


独特的物化性能

(1)具有统一的分子质量,无特殊的分子量分布。

(2)三维结构高度可控,可在特定的位点进行官能团修饰。同时,也可通过外部的官能团的修饰来调节树枝状聚合物的溶解度。高代数的树枝状聚合物具有密集的表面官能团,使内部核被树枝状结构包裹严实,与外界环境隔离。

(3)生物尺寸随着代数的增加而增大,密集的表面基团避免了高分子之间的相互缠结,流体动力学体积小,黏度较低。

(4)黏度随其分子量的增加呈现出先增后减的趋势。

生命科学领域的应用

枝状聚合物合成的基本构建单位可以是氨基酸、糖、核苷酸等分子。在设计治疗和药物载体时,可加入其它基团进行表面修饰,如生物响应元件、识别基团、药物、放射性同位素、脂肪酸、脂类,以及高分子(如聚乙二醇PEG)等。聚合物内部的空腔可用来包裹小分子药物,而外部的基团则可使用化学连接基团修饰后共价连接药物,是高效的新型药物(治疗)载体。

1、药物载体

      由树枝状聚合物构建的载体系统具有独特的载药特点,其表面大量的官能团能与药物共价连接,而球形内部的中空疏水穴也能通过氢键、静电作用、范德华力包埋疏水性的小分子药物。树枝状聚合物的纳米尺寸使它们能特异性地与细胞膜、蛋白和细胞器等发生相互作用,此外,还可通过表面修饰来提高其自身的水溶性。由此树枝状聚合物成为具有良好靶向性和缓释作用的药物载体。

branch1.png

2、基因转染载体

       阳离子的树枝状聚合物作为基因转染载体的优势主要表现在能与核酸发生反应形成复合物,从而有效地防止核酸的降解。 与病毒和脂质体载体两类载体相比,PAMAM具有更高的转染效率和稳定性,同时能延长DNA在体内存活的时间。

       许多文献报导了使用氨基末端的PAMAM作为非病毒基因转染剂,通过细胞内吞DNA将基因转入细胞核。非病毒基因载体转染的步骤是:带负电荷的基因和阳性聚合物形成复合物;与阳性聚合物复合的DNA接触细胞膜;通过胞吞作用内化进入细胞。为了基因的有效表达,DNA需具备从核内体进入胞液,然后转移到细胞核的能力。

branch2.png

3、核磁共振分子造影剂

       树枝状聚合物最早应用于生物医学领域是作为核磁共振显影剂发挥诊断作用,与其它显影剂相比,它具有较高的灵活性,同时还能延长显影剂在血液中停留的时间。此外,与叶酸连接的树枝状聚合物还能特异地结合肿瘤表面过度表达的叶酸受体,实现对肿瘤细胞的靶向性。


客服在线时间:工作日9:00-17:00   |   手机网站

©2018-2022   高分子试剂网-高分子数据库   上海雁科新材料有限公司   版权所有

备案图标.png 沪公网安备 31011702007691‍   |   沪ICP备 18039142号-3

服务号二维码.jpg

高分子试剂网 公众号


高分子试剂网logo.png

polymer168客服.png

微信扫一扫,联系在线客服