高分子数据库
产品目录
  • 嵌段共聚物
    二嵌段共聚物
    两亲性二嵌段共聚物
    疏水性二嵌段共聚物
    亲水性二嵌段共聚物
    三嵌段共聚物
    ABA三嵌段共聚物
    ABC三嵌段共聚物
    四嵌段共聚物
    五嵌段共聚物
    嵌段可裂解共聚物
    酸裂解嵌段共聚物
    UV紫外光裂解嵌段共聚物
    两性离子嵌段共聚物
  • 直链均聚物 | 共聚物 | 低聚物
    直链均聚物+修饰
    亲水均聚物+修饰
    疏水均聚物+修饰
    两性离子均聚物
    均聚低聚物
    无规共聚物+修饰
    2组分无规共聚物
    3组分无规共聚物
    两性离子无规共聚物
    含接枝嵌段的无规共聚物
    交替共聚物
    梯度共聚物
    缩合高分子
    RAFT大分子引发剂
    无机聚合物
    预聚物/单体
  • 生物降解高分子
    合成生物降解高分子
    均聚-生物降解高分子
    共聚-生物降解高分子
    嵌段-生物降解高分子
    荧光-生物降解高分子
    星形-生物降解高分子
    接枝-生物降解高分子
    修饰-生物降解高分子
    聚氨基酸
    聚氨基酸-均聚物
    聚氨基酸-嵌段共聚物
    聚氨基酸-接枝共聚物
    聚氨基酸-功能化修饰
    多糖及衍生物
    透明质酸
    海藻酸
    纤维素
    壳聚糖
    右旋糖酐
    硫酸软骨素
    肝素
    木聚糖
    聚蔗糖
  • 功能化PEG衍生物
    单官能团PEG/PPO
    双官能团PEG
    同双官能团PEG
    异双官能团PEG
    链端羟基PEG
    荧光标记PEG
    荧光标记直链PEG
    荧光标记星形PEG
    多臂星形PEG
    超支化树枝状PEG
    PEO-PPO嵌段共聚物
    PEO-PPO二嵌段共聚物
    PEO-PPO-PEO/PPO-PEO-PPO
    自组装PEG
    自组装PEG脂质体
    自组装PEG表面活性剂
  • 特殊形状高分子
    星形高分子
    多臂星形均聚物
    多臂星形嵌段共聚物
    3臂T型高分子
    4臂H型高分子
    接枝高分子
    超支化树枝状高分子
    笼型聚倍半硅氧烷POSS
    单个笼型POSS
    嵌段共聚物笼型POSS
    蝌蚪状高分子
    蝌蚪状均聚物
    蝌蚪状嵌段共聚物
    环状高分子
    环糊精
  • 功能高分子
    导电高分子
    导电均聚物
    导电共聚物
    导电嵌段共聚物
    修饰导电高分子
    导电低聚物
    荧光/发光高分子
    荧光均聚物
    荧光嵌段共聚物
    荧光标记高分子
    荧光共聚物
    OLED/OFET/OPV光电高分子
    Biotin标记大分子
    形状记忆高分子
  • 稳定同位素高分子
    氘化均聚物
    氘化疏水均聚物
    氘化亲水均聚物
    氘化嵌段共聚物
    氘化二嵌段共聚物
    氘化三嵌段共聚物
    氘化交替共聚物
    氘化无规共聚物
    氘化缩合高分子
    氘化星形高分子
    氘化接枝高分子
    碳13标记高分子
  • 特殊功能试剂
    高分子硫醇
    高分子均聚物硫醇
    嵌段共聚物硫醇
    高分子共聚物硫醇
    星形高分子硫醇
    笼型聚倍半硅氧烷硫醇
    聚硅氧烷
    聚硅氧烷均聚物
    聚硅氧烷二嵌段共聚物
    聚硅氧烷三嵌段共聚物
    聚硅氧烷无规共聚物
    笼型聚倍半硅氧烷
    液晶化合物
    含氟高分子
  • 标准品/电子级高分子
    高分子标准品
    电子级高分子
    电子级均聚物
    电子级二嵌段共聚物
    电子级三嵌段共聚物
  • 纳米材料相关
    石墨烯修饰剂
    碳纳米管修饰剂
    石墨烯
    高分子微球/纳米颗粒
搜索
   微信扫一扫
  联系客服

用于高性能和自稳定发光电化学电池的多种生物电解质《Advanced Functional Materials》

 二维码
发表时间:2022-07-21 16:04作者:Luca M. Cavinato来源:《Advanced Functional Materials》

用于高性能和自稳定发光电化学电池的多种生物电解质01.jpg


用于高性能和自稳定发光电化学电池的多种生物电解质

【摘要】

发光电化学电池(LEC)是最简单和最便宜的固态照明技术,用于柔性电池/或一次性用途。然而,一个主要问题是向环保设备(发射器/电解质/电极)过渡,以满足绿色光电的要求,同时不损害设备性能。在此背景下,本研究显示了第一种应用于LEC的生物电解质,利用纤维素基电解质与典型发射器(共轭聚合物或CPs和离子过渡金属络合物或iTMCs)相结合,实现了自稳定和高性能的器件。与使用传统电解质的参考器件相比,自稳定性测试(环境存储/热应力)表明,使用这种生物电解质的器件长时间保持膜粗糙度和光致发光量子产率。此外,由于高介电常数,电荷注入得到增强,导致了很高的效率15 cd A−1@3750cd m−2和2.5 cd A−1@600cd m−2与CPs/iTMCs-LEC的稳定性分别为3000/7.5h和153/0.7J。与参考设备相比,它们表现出四倍/两倍的增强。因此,这种新的生物电解质方法不会像现有技术中的生物降解聚合物和DNA混合电解质那样降低器件性能,而化学修饰的简易性为未来的发展提供了很大的空间。总而言之,这项研究不仅加强了碳水化合物电解质在能源相关应用方面的相关性,而且也加强了其在照明新领域中的相关性。


用于高性能和自稳定发光电化学电池的多种生物电解质02.jpg


Versatile Biogenic Electrolytes for Highly Performing and Self-Stable Light-Emitting Electrochemical Cells

Luca M. Cavinato, Gonzalo Millán, Julio Fernández-Cestau, Elisa Fresta, Elena Lalinde, Jesús R. Berenguer, Rubén D. Costa

Technical University of Munich, Schulgasse 22, D-94315 Straubing, Germany

First published: 24 April 2022

Advanced Functional Materials, Volume32, Issue29

July 18, 2022

https://doi.org/10.1002/adfm.202201975

Abstract

Light-emitting electrochemical cells (LECs) are the simplest and cheapest solid-state lighting technology for soft and/or single-use purposes. However, a major concern is a transition toward eco-friendly devices (emitters/electrolytes/electrodes) to meet green optoelectronic requirements without jeopardizing device performance. In this context, this study shows the first biogenic electrolyte applied to LECs, realizing self-stable and highly performing devices with cellulose-based electrolytes combined with archetypical emitters (conjugated polymers or CPs and ionic transition-metal complexes or iTMCs). In contrast to reference devices with traditional electrolytes, self-stability tests (ambient storage/thermal-stress) show that devices with this bio-electrolyte hold film roughness and photoluminescence quantum yields over time. In addition, charge injection is enhanced due to the high dielectric constant, leading to high efficacies of 15 cd A−1@3750 cd m−2 and 2.5 cd A−1@600 cd m−2 associated with stabilities of 3000/7.5 h and 153/0.7 J for CPs/iTMCs-LECs, respectively. They represent four-/twofold enhancement compared to reference devices. Hence, this novel biogenic electrolyte approach does not reduce device performance as in the prior-art bio-degradable polymer and DNA-hybrid electrolytes, while the easiness of chemical modification provides plenty of room for future developments. All-in-all, this study reinforces the relevance of carbohydrate-based electrolytes not only for energy-related applications, but also for a new field in lighting.


来源:《Advanced Functional Materials

声明:中文翻译如与英文原文有差异,请以英文为准。所有注明来源的稿件,文章内容仅代表作者观点,本平台转载出于传递更多信息及方便行业探讨之目的,并不意味着本平台赞同其观点或证实其内容的真实性,文章内容仅供学习研究参考。


客服在线时间:工作日9:00-17:00   |   手机网站

©2018-2022   高分子试剂网-高分子数据库   上海雁科新材料有限公司   版权所有

备案图标.png 沪公网安备 31011702007691‍   |   沪ICP备 18039142号-3

服务号二维码.jpg

高分子试剂网 公众号


高分子试剂网logo.png

polymer168客服.png

微信扫一扫,联系在线客服