高分子数据库
产品目录
  • 嵌段共聚物
    二嵌段共聚物
    两亲性二嵌段共聚物
    疏水性二嵌段共聚物
    亲水性二嵌段共聚物
    三嵌段共聚物
    ABA三嵌段共聚物
    ABC三嵌段共聚物
    四嵌段共聚物
    五嵌段共聚物
    嵌段可裂解共聚物
    酸裂解嵌段共聚物
    UV紫外光裂解嵌段共聚物
    两性离子嵌段共聚物
  • 直链均聚物 | 共聚物 | 低聚物
    直链均聚物+修饰
    亲水均聚物+修饰
    疏水均聚物+修饰
    两性离子均聚物
    均聚低聚物
    无规共聚物+修饰
    2组分无规共聚物
    3组分无规共聚物
    两性离子无规共聚物
    含接枝嵌段的无规共聚物
    交替共聚物
    梯度共聚物
    缩合高分子
    RAFT大分子引发剂
    无机聚合物
  • 生物降解高分子
    合成生物降解高分子
    均聚-生物降解高分子
    共聚-生物降解高分子
    嵌段-生物降解高分子
    荧光-生物降解高分子
    星形-生物降解高分子
    接枝-生物降解高分子
    功能化修饰-生物降解高分子
    聚氨基酸
    聚氨基酸-均聚物
    聚氨基酸-嵌段共聚物
    聚氨基酸-接枝共聚物
    聚氨基酸-功能化修饰
    生物降解水凝胶
  • 多肽 | 多糖 | 生物大分子
    多肽及衍生物
    环状多肽及衍生物
    直链多肽及衍生物
    多糖及衍生物
    透明质酸
    海藻酸
    纤维素
    壳聚糖
    右旋糖酐
    硫酸软骨素
    肝素
    木聚糖
    聚蔗糖
    Biotin标记大分子
  • 功能化PEG衍生物
    单官能团PEG/PPO
    双官能团PEG
    同双官能团PEG
    异双官能团PEG
    链端羟基PEG
    荧光标记PEG
    荧光标记直链PEG
    荧光标记星形PEG
    多臂星形PEG
    超支化树枝状PEG
    自组装PEG脂质体
    自组装PEG表面活性剂
    PEO-PPO二嵌段共聚物
    PEO-PPO三嵌段共聚物
  • 特殊形状高分子
    星形高分子
    多臂星形高分子
    多臂星形嵌段共聚物
    3臂T型高分子
    4臂H型高分子
    接枝高分子
    超支化树枝状高分子
    笼型聚倍半硅氧烷POSS
    单个笼型POSS
    嵌段共聚物笼型POSS
    蝌蚪状高分子
  • 功能高分子
    导电高分子
    导电均聚物
    导电共聚物
    导电嵌段共聚物
    功能化修饰导电高分子
    导电低聚物
    荧光/发光高分子
    荧光均聚物
    荧光嵌段共聚物
    荧光标记高分子
    荧光共聚物
    OLED/OFET/OPV光电高分子
    形状记忆高分子
  • 稳定同位素高分子
    氘化均聚物
    氘化疏水均聚物
    氘化亲水均聚物
    氘化嵌段共聚物
    氘化二嵌段共聚物
    氘化三嵌段共聚物
    氘化交替共聚物
    氘化无规共聚物
    氘化缩合高分子
    氘化星形高分子
    氘化接枝高分子
    碳13标记高分子
  • 特殊功能试剂
    功能化硫醇
    聚硅氧烷
    聚硅氧烷均聚物
    聚硅氧烷二嵌段共聚物
    聚硅氧烷三嵌段共聚物
    聚硅氧烷无规共聚物
    笼型聚倍半硅氧烷
    液晶化合物
    纳米材料相关试剂
    石墨烯
    石墨烯修饰剂
    碳纳米管修饰剂
    高分子微球/纳米颗粒
  • 标准品/电子级高分子
    高分子标准品
    电子级高分子
    电子级均聚物
    电子级二嵌段共聚物
    电子级三嵌段共聚物
微信客服

富勒烯 足球烯 Fullerene 简介及其应用

发表时间:2021-09-23 12:07作者:高分子试剂网整理

富勒烯简介

富勒烯(英语:Fullerene) 或巴克球、足球烯是一种完全由碳组成的中空分子,形状呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。


fullerene.jpg


1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在莱斯大学制备出了第一种富勒烯,即“C60分子”或“富勒烯”,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为“巴克明斯特·富勒烯”(巴克球)。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。“也许外太空的富勒烯为地球提供了生命的种子”。


在富勒烯发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。富勒烯和碳纳米管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。


制备

大量低成本地制备高纯度的富勒烯是富勒烯研究的基础,自从克罗托发现C60以来,人们发展了许多种富勒烯的制备方法。目前较为成熟的富勒烯的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。


电弧法

一般将电弧室抽成高真空,然后通入惰性气体如氦气。电弧室中安置有制备富勒烯的阴极和阳极,电极阴极材料通常为光谱级石墨棒,阳极材料一般为石墨棒,通常在阳极电极中添加铢、镍、铜或碳化钨等作为催化剂。当两根高纯石墨电极靠近进行电弧放电时,炭棒气化形成等离子体,在惰性气氛下小碳分子经多次碰撞、合并、闭合而形成稳定的C60及高炭富勒烯分子,它们存在于大量颗粒状烟灰中,沉积在反应器内壁上,收集烟灰提取。电弧法非常耗电、成本高,是实验室中制备空心富勒烯和金属富勒烯常用的方法。


燃烧法

苯、甲苯在氧气作用下不完全燃烧的碳黑中有C60和C70,通过调整压强、气体比例等可以控制C60与C70的比例,这是工业中生产富勒烯的主要方法。


应用

护肤品

由于富勒烯能够亲和自由基,因此个别商家将水溶性富勒烯分散于化妆品,但是效果一般且价格昂贵。


多元体研究

富勒烯衍生物与卟啉、二茂铁等富电子基团共价或非共价形成多元体,用于研究分子内能量、电荷转移、光致能量和电荷转移。


有机太阳能电池

自1995年俞刚博士将富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyric acid methyl ester,简称PC61BM或PCBM)用于本体异质结有机太阳能电池以来,有机太阳能电池得到了长足的发展,其中有三家公司已经将掺杂PCBM的有机太阳能电池商用,迄今大部分有机太阳能电池以富勒烯做为电子受体材料。


富勒烯的应用

富勒烯是单质碳被发现的第三种同素异形体,是一系列由碳组成的笼形分子,呈凸多面体形状,大多为五边形或六边形面,具有硬度高、延展性强、导电性强、质量较轻的性质。富勒烯分子具有独特的三维拓扑结构以及物理、化学性质,由该类分子构建的材料具有特殊的性能,在电子信息、生命科学、环境治理、航空航天等领域逐渐显示出其独有的应用前景。


富勒烯_副本.jpg


应用

富勒烯作为一种新型碳材料,由于独特的笼状结构,已在超导、太阳能电池、催化、光学、高分子材料以及生物等领域表现出优异的性能,具有广阔的发展前景。C60是富勒烯家庭中相对最容易得到、最容易提纯和最廉价的一类,因此C60及其衍生物是被研究和应用最多的富勒烯


应用一:太阳能电池

富勒烯具有优越的氧化还原性、高的电子亲和能,小的重组能,优异的迁移率。而功能化的富勒烯衍生物不仅能够保持富勒烯自身特性,同时也实现了可溶液加工以及物理化学性质的调控。通过在富勒烯上引入不同的官能团,可以进一步调控富勒烯衍生物的溶解性,能级,表面能,及其在固体状态的取向、分子间作用力,以实现富勒烯衍生物的多功能化,使得富勒烯成为在太阳能电池应用中的一种理想的受体材料。如 PCBM、NCBA、ICMA等。此外还可以拓展其在包括光转换器、场效应晶体管等不同领域中的应用。


应用二:电传感器

富勒烯材料修饰的电极所制备的电传感器较传统材料的电传感器,具有可再生、生产工艺简单、可有效增加电极的活性表面积、支持纳米粒子和可与其他材料符合等优点。


应用三:催化剂

富勒烯可以作为一类新的催化剂材料的基础。斯莫利提出可以在富勒烯分子的中心空隙加入一些已知具有催化性能的金属原子,如铂(pt)、钯(pd)等,制成一类新的催化剂,在这种催化剂中,催化性原子被碳笼保护起来。


应用四:润滑体系

C60具有特殊的圆球形状,是所有分子中最圆的分子;另外,C60的结构使其具有特殊的稳定性。在分子水平上,单个C60分子是异常坚硬的,这使得C60富勒烯具有优良的自润滑性,有成为“分子滚珠(轴)”高级润滑剂核心材料的潜力。改善流体润滑体系、固体润滑体系(固体膜、碳基、聚合物基、金属基、陶瓷基润滑体系)摩擦性能,可使体系的摩擦系数减小、磨损率减小、硬度增大,从而优化摩擦性能。


应用五:CVD金刚石薄膜

富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用。富勒烯材料的独特性质之一是它们在较低温度下升华,对于C60,其升华点大约是600℃,这使得富勒烯在不规则形状表面上的气体沉积覆盖相对来说很容易实现。


另外,由于富勒烯易溶于像苯和甲苯这样的极性有机分子溶剂,因而可以在室温下将复杂表面直接浸于制备好的溶液中,待溶剂挥发后就留下一层富勒烯分子薄膜。金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等。


应用六:气体储存

C60分子的结构比较特别,可以作为比金属及金属合金更加有效的吸氢材料。目前,中美科学家研究发现了一种新型的具有储存氢气能力的材料“C60+Ca ”,它不仅能存储氢气,还能存储氧气。更优异的是,高压钢瓶存储气压力是63.9×10 Pa ,而60C存储氧气的压力仅仅是52.3×10 Pa . 在低压的条件下用C60存储大量的氧气对于军事、医疗甚至商业发展都有巨大的作用 .


应用七:超导材料

美国科学家贝尔发现了富勒烯的超导性,即在C60中掺杂活泼金属钾后得到了超导临界温度为18K的K3C60。 掺杂C60超导体的发现是超导领域的又一重大成果。这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比炙手可热的氧化物陶瓷超导体低。


富勒烯超导体最大的优点在于这种化合物容易加工成所需要的各种形状;同时由于它们是三维分子超导体,各向同性,使得电流可以在各个方向均等地流动。同时,富勒烯化合物超导体还具有较高的临界磁场和临界电流密度,理论分析和一些实验结果显示,在更大的富勒烯分子掺杂化合物中可能大幅度提高超导临界温度。良好的性质和潜在的高临界温度为富勒烯超导体的应用创造了条件。


应用八:化妆品

富勒烯C60具有清除活性氧自由基、活化皮肤细胞、预防衰老等作用 .   Mcewen 等首次提出了“维他命C60自由基海绵”的概念,富勒烯C60分子对自由基的清除能力能够像海绵一样,吸收力强且容量超大. 日本科学家Takada 等研究发现,富勒烯C60可以迅速捕捉自由基分子。21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。许多高端护肤品品牌含有富勒烯成分。


应用九:药物载体

富勒烯作为碳纳米材料中的重要一员,其特殊的分子结构决定了其拥有更特殊的物理化学性质,其良好的生物相容性、易反应的活性表面及其作为纳米粒子拥有的大比表面积、小尺寸效应使其在生物医学领域被广泛地应用于药物载体研究。


富勒烯作为药物输运载体用于协助抗肿瘤药物在体内的吸收分布有着得天独厚的优势。首先,富勒烯作为碳纳米材料中的一种,为非极性分子,具有亲油性,在生物体内可以直接透过组织细胞膜; 并且和其他纳米材料一样,可以经组装修饰成纳米粒子通过增强的渗透和滞留效应 (Enhanced permeability and retention) 优先积聚在肿瘤组织中。其次,富勒烯碳笼结构使其拥有大的比表面积,在其表面上可以同时接上不同的基团,经过功能改性后不仅可以提高其生物相容性、增强其在生物体内的靶向性、实现其对药物的缓释控释,还可使其作为药物载体拥有更大的负载量。


QQ在线客服   客服在线时间:工作日9:00-17:00   |   电子邮箱:yancko@qq.com

©2018-2021   高分子试剂网-高分子数据库   上海雁科新材料有限公司   版权所有

备案图标.png 沪公网安备 31011702007691‍   |   沪ICP备 18039142号-3

polymer168客服.png

微信扫一扫,联系客服


高分子试剂网logo.png